EVALUATING THE RISK OF FUNGICIDE RESISTANCE

With only three major modes of action (MOAs) widely used across Canadian crops for foliar application, it's not as simple or practical to just rotate your mode of action. You need to dig a little deeper to understand and assess your true risk of fungicide resistance.

When evaluating the potential for fungicide resistance, scientists who focus on this area consider three categories of risk:

have available and to avoid the situation we have with herbicide resistance. But it should be noted that there are some fundamental differences between the two situations.

Growers and agronomists need to consider three factors when assessing whether they are at risk in developing resistance. Assessing your resistance risk includes evaluating the combination of the fungicide MOA, the pathogen and the specific farming practices used.

COMBINED RESISTANCE RISK MATRIX

When you plot the pathogen risk against the fungicide risk and lastly by your agronomic risk (farming practices), you can estimate your overall potential for resistance risk development.

FUNGICIDE CLASS	FUNGICIDE RISK							
		Low	High	Low	High	Low	High	
Group 1	High = 6							
Group 11		2	6	6	10	0	10	
Group 4		5	, U	Ŭ	12	9	10	ဂ္ဂ
Group 2								MO
Group 7	Medium = 3							BIN
Group 9		1.5	3	3	6	4.5	9	Ð
Group 3								RIS
Multi Sites Resistance Indicated	Low = 1	0.5	1	1	2	1.5	3	×
PATHOGEN RISK		Low = 1		Medium = 2		High = 3		
		Fusarium head blight		Ascochyta blight		Alternaria		
				Anthracnose		Grey mould		
		Sclerotinia Pythium root rot Rhizoctonia Rusts		Septoria leaf spot		Powdery		
PATHOGEN GROUPS						mildew		
				lviycosphaerella leaf spot				
				Net blotch				
				Tan spot	t			0-

Check out the reverse side for a closer look at the considerations for each risk category. For more information on fungicide resistance, see our videos on YouTube - goo.gl/nllwSQ

OT-72-04/17-10749282-E

THE PATHOGEN

- Single vs. multiple disease cycles per year?
- High spore production?
- Soil vs. wind dispersed?
- Infects all growth stages of the crop?
- Does the pathogen have a sexual stage? If asexual only, there is a lower risk.
- **b**. Relative fitness after mutation?
- 7. Do they overwinter?

Based on the above factors combined with global real world documentation, below are some major western Canadian pathogens ranked from high to low risk in terms of the potential for resistance development.*

HIGH RISK PATHOGEN = 3	CROP	DISEASE EXAMPLES			
Alternaria alternata	Various	Alternaria			
Botrytis cinerea	Various (lentils)	Grey mould			
Blumeria graminis	Wheat/barley	Powdery mildew			
MEDIUM RISK PATHOGEN = 2	CROP	DISEASE EXAMPLES			
Ascochyta spp.	Various (pulses)	Ascochyta blight			
Colletotrichum spp.	Various (pulses)	Anthracnose			
Septoria tritici	Wheat	Septoria leaf spot			
Mycosphaerella pinodes	Peas	Mycosphaerella leaf spot			
Pyrenophora teres	Barley	Net blotch			
Pyrenophora tritici-repentis	Wheat	Tan spot			
LOW RISK PATHOGEN = 1	CROP	DISEASE EXAMPLES			
<i>Fusarium</i> spp.	Various	Fusarium head blight			
Sclerotinia sclerotiorum	Various (canola/lentils)	Sclerotinia			
<i>Pythium</i> spp.	Various	Pythium root rot			
Rhizoctonia spp.	Various	Rhizoctonia			
Puccinia spp.	Various	Rusts			

THE FUNGICIDE

- Single target site?
- 2.3. Single gene controls resistance?
- High and persistent activity?

Fundicides are classified by their typical resistance behavior pattern, even though resistance development risk may not be entirely uniform among members of a fungicide Group. Relative rankings shown below are based on the three factors above, plus global, real world documentation.

Fungicide Resistance Action Committee (FRAC) Classification of Fungicide Resistance Risk*

HIGH RISK = 6	Group 11 Qol (Strobilurins) Azoxystrobin Pyraclostrobin Picoxystrobin Trifloxystrobin Group 1 MRC (Benzimidazole)
	TPM Thiabendazole Group 4 (Phenylamides) Metalaxyl
MEDIUM TO HIGH RISK = 3	Group 7 SDHIs Boscalid Fluxapyroxad Fluopyram Penflufen Sedaxane
	Group 2 (Dicarboxamides)
MEDIUM RISK = 3	Group 3 DMIs (Triazoles) Prothioconazole Propiconazole Metconazole Tebuconazole
	Group 9 AP (Anilino Pyrimidines) Pyrimethanil Cyprodinil
	Group 40 CAA (Carboxylic Acid Amines) Dimethomorph
	Group 12 (Phenylpyrroles) Fludioxonil
Low to medium RISK = 1	M3 (Dithiocarbamate) Mancozeb Thiram Maneb
	M1/2 (Inorganics) Copper Sulphur
UNKNOWN	Microbial membrane disruptors

*This is not an exhaustive list, but captures the majority of active ingredients that are relevant for Western Canada

3 5. **6** Irrigation potential?

The final step in assessing your overall risk is evaluating agronomic risk factors with an assigned score of 1 in high risk situations and 0.5 in low risk situations, which essentially means that if you do all things correctly from an agronomic standpoint, you can cut your resistance risk in half!

- Applying a fungicide once the crop is already heavily infected vs. applying preventively, prior to heavy infection

AGRONOMIC PRACTICES

Climatic conditions favouring disease? How many fungicide applications per year? How many fungicide applications are targeted on the same pathogen year over year? What rates are used? (Lethal versus sub-lethal rates) **Besistant cultivars available?** Sanitary measures? (i.e., tillage) Fertilization considerations?

High risk agronomic practices for fungicide resistance development include:

- Utilizing the same mode of action against the same pathogen multiple times in the same growing season (in most cases, diseases that are controlled by seed treatments do not cause foliar symptoms in the same year)
- No complementary use of other non-chemical control measures
- Using susceptible cultivars/varieties
- Not burying heavily infected residue (tillage)
- Poor crop rotations planting same crop year over year, or planting another crop that is susceptible to the same
- pathogens as the year previous

Fungicide resistance reports in cereal, pulse and canola pathogens are fairly rare in North America. The main pathogens of concern for Canadian growers, such as sclerotinia, rusts and fusarium, are all classified as low-risk pathogens. Additionally, agronomic and environmental conditions, which strongly influence resistance risk in Western Canada, are regarded as low. This means that while fungicide resistance is something growers should be aware of, the overall risk of fungicide resistance across the Prairies is guite low relative to other areas of the world.

